PROBLEM

If
$$y = (x + \sqrt{1 + x^2})^n$$
, then $(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$ is [2002]

(a)
$$n^2v$$

(a)
$$n^2y$$
 (b) $-n^2y$ (c) $-y$ (d) $2x^2y$

$$(c)$$
 $-y$

(d)
$$2x^2y$$

(a)
$$y = (x + \sqrt{1 + x^2})^n$$

$$\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \left(1 + \frac{1}{2} (1 + x^2)^{-1/2} \cdot 2x \right);$$

$$\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \frac{(\sqrt{1 + x^2} + x)}{\sqrt{1 + x^2}}$$

or
$$\sqrt{1+x^2} \frac{dy}{dx} = ny$$
 or $\sqrt{1+x^2} y_1 = ny$

$$(y_1 = \frac{dy}{dx})$$
 Squaring, $(1+x^2)y_1^2 = n^2y^2$

Differentiating, $(1+x^2)2y_1y_2 + y_1^2.2x = n^2.2yy_1$ or $(1+x^2)y_2 + xy_1 = n^2y$